

Natural Resources Canada Ressources naturelles Canada

BIOGAS RESOURCE RECOVERY FOR DISTRIBUTED GENERATION

Benny Benson, P.E. SCS Energy

DOE/CETC/CANDRA Workshop on Microturbine Applications January 20-22, 2004 Marina Del Ray, Califonia

Status of Bio Generation

- Difficult to obtain reasonable contracts for sale of wholesale electric power to utilities
- Retail loads at landfills are relatively small
- Retail loads high at wastewater plants, but limited available fuel low
- * Retail rates are still fairly high
- Can exploit high retail rates through distributed generation technology

Candidate Sites for Retail Deferral

- Large landfill gas flare station
- Water treatment plant
- Leachate or groundwater treatment plant
- MRF or transfer station
- Office complex
- * "Over the Fence" User

Distributed Generation Technologies

- * Reciprocating engines
- * Microturbines
- * Fuel cells
- Stirling cycle engines
- Organic Rankine cycle

SCS Energy

- ❖ SCS Engineers 30 Years of Landfill/Landfill Gas Experience
- ❖ SCS Field Services Operate ~ 150 Landfill Sites
- SCS Energy Developed Specifically for Distributed Generation

SCS Energy – Experience

(Feasibility Studies, Design, Construct, and Operation, Turnkey)

- ❖ Reciprocating Engines₍₈₎ 12 MW (Jenbacher, Deutz)
- ❖ Microturbines (55) − 2,710 kW (Ingersoll-Rand-70, Capstone-30)
- ★ Microturbine 250 kw (Ingersoll-Rand-250)
- ❖ Fuel Cell 250 kW (Fuel Cell Energy)
- Organic Rankine System 200 kW (UTC)

Case Study Operating Industries, Inc. (OII) Landfill

- Located in Monterey Park, CA (Los Angeles County)
- * Open from 1948 to 1984
- Permitted for liquid waste 1976 (300 million gallons received)
- * 30 million tons of waste in place
- * Refuse mass over 300 feet thick
- Placed on Superfund list 1986

LFG Collection and Control System

- * 350 vertical extraction wells
- 150 liquid removal pumps
- 40,000 ft. of above-grade PVC LFG collection piping
- Two 4000 scfm flares rated for 99.99% DRE (Destruction & Removal Efficiency)
- * 20,000 GPD Leachate Treatment Plant

Project Motivations

- ❖ On-Site power cost of \$20 − \$30,000 per month
- Less than 5% of available landfill gas required to satisfy on-site power requirements
- State grant funds were available
- * Conversion of a wasted energy resource into green power
- Make a contribution to resolution of California power crisis

Ingersoll-Rand Microturbine Selection

- * Larger size required less units (6 vs 14)
- Ingersoll-Rand offered a 5-year fixed price maintenance contract
- Ingersoll-Rand was willing to accept operation without siloxane removal

Project Components

- Six 70 kW Ingersoll-Rand microturbines
- ❖ 300 scfm/10 psig positive displacement blower
- Refrigeration and reheat modules (chills to 40° F and reheats to 60° F+)
- * Exhaust Ducting into the flare combustion air blowers
- Dedicated LFG fuel line
- Switchgear, distibution, & utility metering equipment
- Plant control system for local & remote monitoring, alarming, and start/stop control

You Ar

OII Landfill Project Summary

- \Leftrightarrow Capital cost = \$1,300,000 (\$3,095/kW)
- \bullet O&M cost = 1.9¢/kWh
- ❖ On-site retail deferral at 15¢/kWh
- \star Interconnection cost = \$105,000 (\$250/kW)
- Design/construction duration = 6 months
- Simple payback (after grants) = 2.0 years

Case Study Los Angeles County Sanitation District Calabasas Landfill

- Located in Agoura, CA (Los Angeles County)
- * Began disposal operations in 1961
- ❖ Landfill currently open and accepting 1,000 tons refuse per day
- * 20 million tons of waste in place

LFG Collection and Control System

- * 611 vertical extraction wells
- * 65,000 linear feet of horizontal collection trench
- ❖ 50,000 linear feet of above grade PVC collection piping
- * Flare station gas flow 6,000 scfm
- Low gas quality to flare station (< 30% methane)

Project Motivations

- High on-site power cost
- SCAQMD offer of ten 30kW Capstone microturbines
- State grant funds were available
- Less than 3% of available landfill gas required to satisfy on-site power requirements
- Conversion of a wasted energy resource into green power
- * Make a contribution to resolution of California power crisis

Microturbine Motivations

- * Low on-site power load (flare, irrigation pumps)
- **❖** Low methane content in LFG (< 30%)
- Desire for low Nox emissions

Project Components

- * Ten 30 kW Capstone microturbines
- 200 scfm/80 psig compressor
- Refrigeration and reheat modules (chills to 40° F and reheats to 60° F+)
- Graphite-based, activated carbon treatment
- Dedicated LFG fuel line from select wells
- * Switchgear, distibution, & utility metering equipment
- Plant control system for local & remote monitoring, alarming, and start/stop control

Turbine Number:	1	2	3	4	5	6	7	8	9	10
Turbine Enabled:	Enabled									
Runtime (hrs):	347	347	347	347	347	347	347	347	347	347
		Î								
Power Output (kW):	27	26	24	24	25	24	25	26	26	26
Current (A):	850	88	81	81	84	81	85	86	86	86
Ambient Air Pressure (psia):	13	14	14	14	13	13	14	13	14	14
Compressor Inlet Temp (F)	98	98	98	98	98	98	98	98	98	98
					3					
Engine Speed (RPM):	96,300	96,090	95,798	95,612	95,862	95,654	95,612	95,924	96,048	96,028
Exhaust Temperature (F):	938	938	938	941	941	939	939	939	938	938

Select the turbine information you would like to highlight

F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
Main	Pre-Treat	Alarm	Turbine	Flare	Turbine	Power	Maint	Custom	Custom	Event	Clean
Screen	System	Screen	Status	Systems	Summary	Summary	Enrty	Trends	Reports	History	Screen

Calabasas Landfill – Cont.

- * Capital cost = \$770,000 (\$2,570/kW)
- \bullet O&M cost = 2.5¢/kWh
- Onsite retail deferral at 15¢/kWh
- \star Interconnection cost = \$5,000 (\$16/kW)
- Design/construction duration = 5 months
- ❖ Simple payback (after grants) = 1.6 years

TYPICAL TURNKEY PROJECT TIMELINE

	MONTH						
DESCRIPTION	1	2	3	4	5	6	
DESIGN	10	WEEKS					
INTERCONNECTION		12 WEEK	S				
ELECTRICAL EQUIPMENT			14	WEEKS			
MECHANICAL EQUIPMENT			16 W	EEKS			
SITE WORK					6 WEE	KS	
START-UP						2	

TYPICAL TURNKEY PROJECT TIMELINE

	MONTH								
DESCRIPTION	1	2	3	4	5	6			
DESIGN	10	WEEKS							
INTERCONNECTION		1 <mark>2 WEEK</mark>	S						
ELECTRICAL EQUIPMENT	PERMIT !!!								
MECHANICAL EQUIPMENT	(AIR, SUP, TITLE V,)								
SITE WORK	UP TO 40 WEEKS								
START-UP						2			

Advantages Microturbine Versus Reciprocating Engine

- **❖** Lower NO_x emissions (1/10)
- * Can operate on lower methane content fuels
- Pre-packaged in small incremental capacities
- ❖ Lower maintenance costs yet to be proven on a long-term basis

<u>Disadvantages</u> <u>Microturbine Versus Reciprocating Engine</u>

- Higher heat rate / Lower Efficiency
- Higher capital cost
- Less proven technology
- High Pressure Fuel Requirements
- Significant Fuel Pre-treatment Requirements

DESIGN AND OPERATIONAL ISSUES

COORDINATION

- FUEL SUPPLY
- PRE-TREATMENT
- PRIME MOVER
- HEAT RECOVERY

❖ LEVEL OF PRE-TREATMENT

- > TYPE OF COMPRESSION
- CAPACITY
- MOISTURE REMOVAL
- > H2S REMOVAL
- SILOXANE REMOVAL
- **❖** CONTROL SYSTEM
- NOISE
- **❖** PROTECTIVE RELAY REQUIREMENTS

Conclusions

- Several emerging technologies are available to support small BioGas projects
- Microturbines are a relatively proven technology
- Stirling Engines may represent the next major advance in cost reduction
- High retail power costs and financial incentives can result in economically feasible projects

Natural Resources Canada

Ressources naturelles Canada

BIOGAS RESOURCE RECOVERY FOR DISTRIBUTED GENERATION

Contact Information:

SCS ENERGY
Benny Benson, P.E.
Bbenson@scseng.com
(562) 426-9544
WWW.SCS-ENERGY.COM

DOE/CETC/CANDRA Workshop on Microturbine Applications January 20-22, 2004 Marina Del Ray, Califonia